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Preface i

Preface to the First
Edition

This book is an extended version of my previous books published
under the title “A Unified Theory of Generalized Differentiation and In-
tegration.” The content of the previous books is extended and enhanced
especially about the spaces on which the proposed theory can be con-
structed.

It is shown that the function space F which is introduced in my pre-
vious books can be extended to the generalized function space Fo, by
adding the delta function § and its higher derivatives p™ o § to F. The
subspace N, which is the kernel of the semi p-operator p on Fo, and
the subspace Sp o, which is the image of 7o by p will play important
roles in constructing the coset space Foo(= Foo/Noo). There is a ho-
momorphism from F,, to this coset space under both addition + and
convolution *. A linear semi p-operator on this coset space can be in-
duced from a linear semi p-operator on F. In this extension, usual
Leibniz’s rule cannot be applied. It must be replaced with weighted
Leibniz’s rule with a constant weight 1/2.

Improvement and refinement have been done in many places through-
out this book. The motive and the aim of publishing this book are the
same as those of the first edition of my previous book. So I will cite the
preface of that book here.

The aim of this book is to give a unified theory of gener-
alized differentiation and integration.

In this book, a differentiator-like operator to arbitrary or-
der has been defined and a theory on fractional calculus has
been developed from a new standpoint. It is well-known that
classical differentiation and integration to arbitrary order
have been well established in classical fractional calculus[1]-



ii

Preface

[3] and in distribution theory[24],[25].

The theory presented in this book is constructed on a
more general operator-based formulation which includes not
only the previous formulations of fractional calculus but also
a new formulation based on general differentiator-like linear
operators to arbitrary order.

The incentive to develop this theory dates back to my
master thesis. When I was a senior student in the under-
graduate course of the Department of Electrical Engineering,
Kumamoto University(KU), I began my theoretical research
on a wave propagation problem so-called the Sommerfeld
Problem under guidance of Prof. A. Yokoyama. At that
time, Prof. Yokoyama developed a very efficient operational
method to derive an asymptotic formula for a far-zone field
of a dipole radiation effected by the plane earth. I was very
much impressed by the beauty of his method and I tried to
found his method on a more rigorous mathematical ground
in my master thesis.

My main idea is to consider a sequence {\,, }32, generated
by the equation p™o f = A, f, where f and A,, are functions
and p is a differentiator-like operator. In my master thesis, I
derived the main theorem in Chapter 3 of this book and ap-
plied it to the Sommerfeld Problem. When I was preparing
my master thesis, I noticed that, since the Gamma function
can be regarded as the interpolation of a factorial, it would
be possible to extend differentiation and integration to ar-
bitrary order by using the Gamma functions. So I dreamed
to extend A, to non-integer index values in order to make it
easier to evaluate the contour integrals around a pole or a
branch point that we encounter in the Sommerfeld Problem.

After graduating from the Graduate School of Electrical
Engineering in KU, I worked for Hitachi Ltd. in the field of
an IC technology as a research staff. About four years later,
I joined the Faculty of Engineering, KU, where I engaged in
education and research on electronic circuits until my retire-
ment. During these periods, I had been almost apart from
my dream though I sometimes continued my private research
on weekends. After my retirement from KU, I started again
my theoretical work to pursue my dream.

At the end of 2014, T decided to write a book about my
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work on constructing a unified theory of generalized differ-
entiation and integration by extending p" o f = A, f to ar-
bitrary order. To tell the truth, I have been in complete
ignorance of the fact that fractional calculus has already
been well developed and it has a three-century history. 1
learned fractional calculus from a book written by Oldham
and Spanier[1] recently. From January to May, 2015, I was
so busy and nervous because I had to check whether the re-
sults given in Oldham & Spanier’s book can be reproduced
from my theory. Finishing this work, I convinced that my
theory can reproduce the classical results and it is an exten-
sion of classical fractional calculus.

In this book, a differentiation operator in fractional cal-
culus is generalized to a more general operator that I call
semi p-operator which may be linear or non-linear. Then,
we consider a sequence of functions {\,}52, generated by
the equation p"o f = A, f where p is a linear semi p-operator
and f is a function. And we introduce its integral represen-
tation in a complex region. Like the Gamma function which
is an extension of a factorial, we can extend A,, to arbitrary
index values via its integral representation. Thereby we can
define p* o f = A, f where z is an arbitrary order. The clas-
sical fractional calculus can be derived as a special case and
various special functions of arbitrary order follow from A, by
choosing different pairs of p and f. Some applications of the
theory are given in the last chapter with special emphasis
on the electromagnetic wave problems.

Chapter 1 in this book is a brief introduction of the history of frac-
tional calculus.

The following Chapter 2 is the preliminaries which give the definitions
of a function space and operators to be used in the succeeding chapters.
In particular, Definition 2.1 gives the definition of a function space F
on which the present theory is constructed. Remark 2.14 shows that
we can obtain weighted Leibniz’s theorem by extending usual Leibniz’s
theorem when the weight is a constant and the multiplication operation
is the binomial operation ® defined in Definition 2.13. Remark 2.15
shows the relationship between the A-sequence and the Riccati differ-
ential equation. The function space Fo, is introduced in Section 2.2
and its relationship to F is clarified there in detail. Section 2.3 gives
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interesting formulae about commutators.

In Chapter 3, the sequence {\,,}22, is introduced and the fundamen-
tal theorems on this sequence are proved. In addition, Theorem 3.15
gives the derivation of \,, for when a semi p-operator is a sum of n
different semi p-operators and it is applied to a product of n different
functions in F.

In Chapter 4, the more general sequences of functions {u, }52,’s and
their induced sequences are considered and discussed in three interest-
ing cases. It is proved that those induced sequences have expansions of
a similar form as A,, has.

The integral representation of )\, and its extension to arbitrary order
are described in Chapter 5. In this chapter, the relations to the pre-
vious definitions of fractional calculus are discussed. Other interesting
results shown in this chapter are as follows. Theorem 5.9 presents the
relation that holds between the generating function of \,, and its partial
sum. Remark 5.13 shows that Riemann’s zeta function {(5 + 1) can be
obtained by the f(-fold fractional integration of z/(e* — 1) when eval-
uated at = 0. Theorem 5.14 shows the shift-invariance property of
the operator (d/dz)® where « is a complex order. Theorem 5.18 gives
a weaker sufficient condition for (d/dz)® to be a continuous operator
to bounded regular functions. Case I in Section 5.7 shows that the ex-
tension of (yD)™ o f = A\, f to arbitrary order can be derived from its
induced sequence.

In Chapter 6, various special functions are derived as \,, for different
pairs of p and f, and they are extended to arbitrary order. One of the
interesting results in this chapter is Theorem 6.6 which shows that the
composition rule holds for the operator (d/dz)* when it is applied to a
complex function which is regular in an open disk in the complex plane
and satisfies some additional conditions.

Some applications of the theory are given in Chapter 7 where an
order-reduction of ordinary differential equations of a certain type, so-
lutions of basic differ-integral equations, an infinite continued square
root, diffusion-type equations, a semi-infinite electric circuit, and elec-
tromagnetic wave problems are investigated. Theorem 7.1 supplemented
by Remarks 7.1-7.2 gives a solution of a basic differ-integral equation.
Section 7.3 gives an interesting example of the infinite continued square
root that is derived as an application of Remark 2.15. Subsection 7.4.3
shows that the quasi-classical approximation(the WKB approximation)
for a solution of Schrédinger’s equation in quantum mechanics can be
easily obtained by using A,,. The Sommerfeld problem is treated in
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Subsection 7.4.5.

Theorems A.1 and A.2 in Appendix A give the important theorems
which are used in Sections 5.4 and 5.7 and in Chapters 6-7.

Finally, I should like to express my sincere gratitude to Prof. Akira
Yokoyama for guiding me to this fruitful field of science and I must also
express my thanks to my wife Toshiko for her patience and continuous
support to this work.

Takahiro Inoue

Kumamoto,
March, 2017
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Preface to the Second
Edition

This book is intended to formulate fractional calculus by using an
operator-based method. The differentiation operator in classical frac-
tional calculus is extended to a more general linear operator which sat-
isfies Leibniz’s rule. The key idea is to consider a sequence of functions
produced by iterated applications of such a linear operator to a function
belonging to some specified function space. Fractional power of such a
linear operator is defined by extending the integral representation of a
function in such a sequence by analytic continuation. The advantage of
this theory is that it can grasp special functions within its scope and
this scope is broad enough to induce a theory of fractional calculus on
a coset space.

The contents newly added in the second edition are Remarks 2.17-
2.18, Remark 3.1, Theorem 3.2, Remark 3.2, Remark 3.4, Definition 3.3,
Theorems 3.7-3.10, Remark 3.6, Definition 5.2, Theorem 5.4, Remark
5.6, Theorem 5.5, Remark 5.10, Theorem 6.4, and Remarks 6.4-6.5.

Remark 2.17 shows that F., in Remark 2.16 is an algebra, and N
and Sp o are ideals in this algebra. In Remark 2.18 (and also in The-
orem 2.15), it is shown that when F, is defined by Remark 2.16, the
semi p-operator p on F., which is induced from the semi p-operator p
on J,, behaves in accordance with p on F.

Remark 3.1 gives the A-expansion of A\,4; in the function space F
when A\; commutes with a linear semi p-operator p. Theorem 3.2 gives
the generating formula of \,, in F for when A; and p commute. Remark
3.2 shows how the generating function of A,4; in the function space
F is obtained from that of A\, in F and that the generating function
of Apy1 in F is given by A;(z 4 t)e* (@) when p and A; commute. In
Remark 3.4, it is shown that po f* = f"Y(po f) = f*(po1) = 0 holds
for n = 1,2,... when p commutes with f(€ F). Definition 3.3 gives
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the definition of A, in F of Remark 2.16. The generating formula of
An+1 in such an F is given in Theorem 3.7. Theorem 3.8 gives the
alternative generating formula of A,, in such an F.,. Theorem 3.9 gives
the A-expansion of A\,y; for when the function space F, and the lin-
ear semi p-operator p are defined by Remark 2.16 and A, is defined by
Definition 3.3. The generating function of A,4+1 in the function space
Foo of Remark 2.16 is given by Theorem 3.10. Remark 3.6 gives the
alternative generating function of A\, in F, of Remark 2.16. In this
remark the alternative expression of A, in Theorem 3.8 is used.

Definition 5.2 gives the definition of p* o ¢ where c is a constant func-
tion. Theorem 5.4 gives the integral representation of A,4; in Foo of
Remark 2.16. Its extension to arbitrary complex order is given in Re-
mark 5.6 along with the integral representation of A, in such an F
and its extension to complex order. In Theorem 5.5, it is shown that
when F, is defined by Remark 2.16, the definition of A, introduced
in Remark 5.6 is equivalent to that to be introduced in Remark 5.10.
In Remark 5.10, the definition of A.;; in F, of Remark 2.16 is given
by using the generalized binomial expansion.

Theorem 6.4 gives the theorem on how (d/dx)* oz™ can be defined for

when m = —1,-2,... and z #m,m — 1,m — 2,.... Remark 6.4 shows
that the definition of (d/dz)? o™ given in Theorem 6.4 is broader than
that given in Theorem 6.3 when m = —1,-2,.... In Remark 6.5, it

is shown that (wxd/dz)* o z=! = (—=1)*z~! holds even for Rz < 0 in
addition to 2 =0,1,2,....

Small modifications and corrections have been made throughout this
book to enhance the clarity of each assertion.

Lastly, it is my small hope that this book will be some contribution
to the development of fractional calculus.

Takahiro Inoue

Kumamoto,
August, 2017
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Preface to the Third
Edition

The contents newly added in the third edition are Remark 2.4, Remark
2.11, Definition 5.5, Theorem 5.20, Remark 5.16, Theorem 5.21, Remark
5.17, Definition 5.6, Theorems 5.22-5.23, and Remark 5.18.

Remark 2.4 calls readers’ attention to that Lg in the proof of Theorem
2.1 is assumed to be a linear operator. So Ly must be a homogeneous
operator in addition to that it is a homomorphic mapping with respect
to addition. In this remark, the assumption that Ly is a homogeneous
operator is justified if we define po f for f > 0 by po f® = af* 'po f
where « is an arbitrary real number. Remark 2.11 shows the alternative
statement of Definition 2.2 in terms of A;’s of f,g € F under some
restricted condition on f and g.

Definition 5.5 gives the definition of a uniformly convergent infinite
series of polynomials in f(€ F) in a generalized sense with respect to
f(x) € D where D is a simply-connected region in the complex plane.
Under the condition that a linear semi p-operator is applicable term-by-
term to any such a uniformly convergent infinite series of polynomials
in f(€ F), Theorem 5.20 gives an explicit formula of p o F(f) for a
composite function F(f) when F(z) is a regular function of z in D.
Remark 5.16 calls readers’ attention to that the result in Theorem 5.20
corresponds to the chain rule for differentiation of a composite function
in classical calculus. Under some condition of p® similar to that of p in
Theorem 5.20, Theorem 5.21 gives the integral representation of p® o
F(f) for a complex order « if the existence of the integral representation
of p®o f* is assured for each non-negative integer k. Remark 5.17 derives
the explicit algebraic formula for p" o F/(f) which corresponds to Faa
di Bruno’s formula for the n-th order differentiation of a composite
function. And, in addition, it shows that the expression for p o F(f)
given in Theorem 5.20 is justified also by Theorem 5.21.
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Definition 5.6 gives the definition of the Laplace transform of p® o f
where « is a complex order. Theorem 5.22 shows that a classical result
for the Laplace transform £[(d/dz)™o f] can be obtained from Definition
5.6 when the order n is a positive integer. Theorem 5.23 gives the
formula for the Laplace transform £[(d/dx)® o f] when « is a real order.
In Remark 5.18, the Laplace transform of {(az + b)(d/dz)}* o (azx + b)
is derived by using Definition 5.6 when a(# 0) and b are constants and
« is an arbitrary complex order.

In this book, small corrections and improvements have been made in
the places where I thought the assertion should be refined.

Takahiro Inoue

Kumamoto,
January, 2018
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Chapter 1

Introduction

The interpolation of differentiation and integration to non-integer or-
der is often called “fractional differ-integration” and the calculus based
on this is called “fractional calculus”[1]-[3]. Since this interpolation can
be extended to arbitrary complex order by analytic continuation, the
theory on fractional calculus is the generalization and unification of dif-
ferentiation and integration.

The history of fractional calculus can be traced back to Leibniz’s re-
sponse to L’Hospital’s letter dated 30th September, 1695[4]. L’Hospital
asked him what would result if n = 1/2 for d" f(z)/dz™. Leibniz re-
sponded prophetically that one day useful consequences will be drawn
from it[1],[2]. In 1819, S. F. Lacroix[5] obtained

d .1 2\/x
(== (1.1)
by extending integers m and n of
d.y m_ T(m+1) men
(%) T Tm+i-n) " (1.2)

tom =1 and n = 1/2, where I'(-) is the Gamma function. In 1822, J.
B. J. Fourier[6] generalized differentiation and integration by regarding
n of the formula

+oo +oo T
(Lyn (o) = i/ f(a)da/ 5" cos(fr — o+ )5 (1.3)

dx 21 ) _ oo oo

1
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as any real number. In 1823, N. H. Abel[7],[8] solved the tautochrone
problem by using fractional integration of order 1/2. From 1832 to 1855,
J. Liouville[9]-[11] carried out major studies on fractional calculus. He
expanded functions in series of exponential functions and defined the
non-integer order derivatives by term-by-term fractional operations. He
also discussed fractional derivatives as the limits of a discretized-version
definition of fractional derivatives. In 1847, B. Riemann[12] derived the
definition of fractional integration:

d._, 1 ¢ g—1
G 1@ =577 [ @0 s, (14)

where ¢ > 0. In 1884, H. Laurent[13] generalized Cauchy’s integral for-
mula (or Goursat’s formula) for the n-th derivative of a complex func-
tion by extending Letnikov’s work in 1872[14]. The unified discretized-
version of fractional differentiation and integration was given by A. K.
Griinwald in 1867[15] and extended by E. L. Post in 1930[16]. This
unified discretized-version of fractional differentiation and integration is
proven to be equivalent to the continuous version given by the Riemann-
Liouville definition:

@) = s [(@e w0

where n is an integer such that (n — 1) < ¢ < n[2]. In 1899, O. Heav-
iside used fractional differentiation in his transmission line theory[17].
Though the rigorousness of the operational calculus developed by him
had been criticized, it was later founded on a rigorous mathematical
ground by J. Mikusiniski[18]. Readers will find the further detailed his-
tory and the information on recent developments in References [1]-[3].
Fractional calculus provides us with a very powerful mathematical
tool in analyzing natural phenomena in the real world since many natu-
ral phenomena we encounter in the real world are governed by the power
law. The usefulness of fractional calculus is in that (i) the Fourier trans-
form of a power law distribution of the form [¢t|~% (where 0 < a < 1
) in the time domain (e.g., a long-tailed decay) is also a power law of
the form w®~! in the frequency domain and (ii) the fractional differ-
integration by time is directly related to the fractional power law in the
frequency domain by the inverse Fourier transform. These properties
are applied to the spectral analysis of relaxation processes and to the
stochastic process of the fractional Brownian motion[19],[20]. Interest-
ing discussions on these matters can be found in References [2],[20].
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Another important fact regarding fractional calculus is that differenti-
ation to non-integer order is based on a non-local property of a function
to be differentiated whereas differentiation to integer order is based on a
local property of the function. This is because fractional differentiation
to non-integer order is essentially the interpolation given by an integral
representation which depends on a non-local property of the integrand.

In the following chapters of this book, a differential operator is ex-
tended to a more general differentiator-like operator which I call “sems
p-operator” in this book. In case where this semi p-operator is linear,
the integer-order power of this operator is extended to arbitrary order
with respect to a function belonging to some sufficiently broad function
space. In this theory, the sequence which I call the “A-sequence” in
this book and its contour integral representation are essential. By using
these concepts, the relation between the proposed definition and the
classical definitions of fractional differ-integration is explained. In later
chapters, applications to special functions and to some typical problems
in physics are also presented.






Chapter 2

Preliminaries

2.1 Function Space F and Related Opera-
tors

Let X and Y be topological spaces. In addition, we assume that
Y has the zero element Oy and the multiplicative identity element 1y
under addition and multiplication in Y, respectively.

Throughout this book, Oy and 1y will be simply denoted by 0 and 1,
respectively, wherever they will not be confused with the zero function
0 and the identity function 1, both of which are the elements of the
following function space F.

Definition 2.1 A “function space F” is a collection of functions f :
X =Y such that
(i) F is a linear space;
(ii) F is closed under multiplication:fg € F for any f,g € F;
(iil) Multiplication is commutative:fg = gf for any f,g € F;
(iv) Multiplication is associative:(fg)h = f(gh) for any f,g,h € F;
(v) Scalar multiplication is defined such that (af)(Bg) = (aB)(fg) € F
for any scalars a and 3;
(vi) Addition and multiplication in F are connected by the distributive
law: (f + g)h = fh+ gh for any f,g,h € F;
(vii) F has the identity function 1 such that 1f = f1 = f for any
feF;
(viii) For some f € F such that f # al for any scalar a, there exists a
unique f € F such that ff = ff =1.

5
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Note here that fg(€ F) in (i) is not a composition of two mappings.

In addition, we assume F has at least one (semi) p-operator defined
below.

Definition 2.2 A “semi p-operator” p is a mapping of F into itself
such that

(i) for ¢,0 € F, poc =0 if c is a constant function ! ;

(ii) for any f,g € F, po(fg) = (po flg+ f(pog) (Leibniz’s rule).

In case where p can be defined such that, under a certain definite rule,
a unique f € F is specified corresponding to each g(=po f) € F, I call
it “the p-operator of F.”

(Note here that po1 =0 can be derived only from (ii) of Definition 2.2
if some f € F has f. Hence, in Definition 2.2, (i) can be replaced with
[p,c] = 0 if some f € F has f where [-,-] is a commutator defined in
Sec. 2.3.)

Definition 2.3 Ifpo f, = po f as fn, = f for any fn,f € S(C F),
then p is called a continuous (semi) p-operator on S.

Definition 2.4 Let us call a subset S of F “a linear subspace of F”
when it is a linear space. And let us call a subset S of F “a subspace
of F7 when it satisfies all the conditions in Definitions 2.1 and 2.2 of a
function space F. Note that if S is a subspace of F, then it is a linear
subspace of F.

Remark 2.1 Let us define df for f € F by df 2 Hf — fH, where H
is an operator such that H : F — F and Hc = cH if ¢ is a constant
function. Then, the operator d is a semi p-operator.

Remark 2.2 An example of a semi p-operator in tensor analysis is
the covariant derivative under which the fundamental tensor and the
unit tensor are constant functions.

Remark 2.3 Let h besuch that h € . And let p be a semi p-operator
of F. Then, it is easy to verify that hp is also a semi p-operator of F.

Theorem 2.1 Let F be the set of all infinitely smooth real functions
f: X =Y where both X andY are in (—o0,+00). And let p be a semi

T Some appropriate subset of F can be chosen as the set of all constant functions
in F, say Sc. Then the semi p-operator p of F is defined with respect to S. by
Definition 2.2.
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p-operator of F. Then, for all x € X such that f(x) #0, po f can be
expressed as

d
= 2 2.
pof=(fL)o () oln|f], (2.1)
where L is a linear operator of F (see Definition 2.5).

Proof: By (ii) in Definition 2.2, we have

+
fg f g
for all x € X such that f(z) # 0 and g(x) # 0 where f,g € F. Since
(2.2) implies the logarithmic operation for the product of functions,
there exists some linear operator Ly : F — F such that

po(fg) _pof pog (2.2)

pof
f

In addition, to satisfy (i) in Definition 2.2, the linear operator Ly can
be written as

= Looln|f]. (2.3)

Lo=Lo (), (2.4)

where L is a linear operator of F. Q.E.D.

Remark 2.4 Note that Ly in the proof of Theorem 2.1 is assumed
to be a homogeneous operator in addition to being a homomorphic
mapping under addition since Ly is assumed to be a linear operator.
Namely, Loa = aLy is assumed to hold for any real number a. Such an
assumption for Lg is justified if we define po f* for f > 0 by po f* =
af*po f in accordance with (3.9) in Lemma 3.1. This is because
when (2.3) holds, one can prove that for f > 0 and any real number «,

(po f*)/f* =a{(pe f)/f} & Loa = aLe.

Remark 2.5 Let F be the set of all regular functions f(z)’s defined
on a region D in the complex plane C. And let p be a semi p-operator
of F. Then, for all z € D such that f(z) # 0, po f can be expressed as

pof=(L)o(s)on . (2.5)

where L is a linear operator of F.
Note here that for f : X — Y, X = D by its relative topology to the
topology of C and Y = C.
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Remark 2.6 Let F be the set of all infinitely smooth real functions
f: X =Y where both X and YV are in (—oo,+00). For f € S = {f :
feF, f(x) #0 for all z € X}, let us define s,, by

wo f = @) (o) |5 (2],

where n is a positive integer. Then, s,, is an operator s, : S — F. Note
that if n = 1, then the operator s; can be extended to a linear semi
p-operator of F since f(z)(d/dz)In|f(x)| = (d/dz)f(x). If n =2, then
So is a non-linear operator since

i 2 _ i 2 1 df (@) |5

F@( ) Ilf@)] = (@) - 7S

Lemma 2.1 Let p be a semi p-operator of F. If f € F and f ewists
in JF, then we have

pof=—Fpof).
Proof: By (ii) in Definition 2.2, we have

po(ff)=Wwof)f + fpof).

By (i) in Definition 2.2. the left-hand side of the above equation is zero
since ff is a constant function by (viii) in Definition 2.1. Q.E.D.

Definition 2.5

(i) If L is a mapping such that Lo f € F for any f € F, then L is called
an operator of F. (Note that any g € F is an operator of F because
gf € F for any f € F. Hence we can write gf = go f.);

(i) (Lf) o9 = Lo (fg) for any f.g € F;

(ifi) (FL) o g = f(L o g) for any f.g € F;

(iv) If an operator L of F satisfies Lo (af + g9) =aLo f+ BLog for
any f,g € F and any scalars a, B, then L is called a linear operator

of F.

Definition 2.6  Multiplication of two operators L, and Lo of F is
defined by

(L1 °L2)0féL1°(L2°f)
for all f € F. (Note that (ii) and (iii) in Definition 2.5 can be removed
under Definition 2.6 since any g € F can be regarded as an operator of

F)
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Definition 2.7 Addition and subtraction of two operators Ly and Lo
of F are defined by

(Ll:tLQ)OféLlof:tLQOf
for all f € F.

Definition 2.8 An operator L of F is called the zero operator of F
if and only if Lo f =0 for all f € F.

Definition 2.9 The operators Ly and Lo of F are equal if and only
if L1 — Lo is the zero operator of F.

Remark 2.7 Let A, be the collection of all semi p-operators on F.
When the addition + of semi p-operators is defined as in Definition
2.7, we have p1,ps € A, = p1 +p2 € Ap. In addition, we assume
that the associative and the commutative law hold for the addition.
It is clear that the zero operator defined in Definition 2.8 is a semi p-
operator since it satisfies all the conditions in Definition 2.2. Since F
is a linear space, —p o f exists for any f € F and any p € A, and
piof+pz2of=p2of+piofholdsforany f € F and any p1,p2 € Ap.
Now let us define the operator —p such that (—p) o f = —po f € F for
any f € F. Then —p is also a semi p-operator since —p satisfies all the
conditions in Definition 2.2. Hence, 4, is an Abelian group.

Theorem 2.2  Suppose that the topological space Y is a field. And
let A be the collection of all functions f : X — Y such that addi-
tion and multiplication in A are induced from those in'Y in a natural
way:(f + 9)(2) £ f(2) + 9(x) = g(&) + (2) and (fg)(x) = f(x)g(x) =
g(x)f(x). If A has some semi p-operator, then A is the function space
F in Definition 2.1.

Proof: Since Y is a field, A satisfies (i)-(viii) in Definition 2.1 by
regarding that Y is also the coefficient field of A. Hence, by Definition
2.1 and by assumption that some semi p-operator exists for A, A is the
function space F in Definition 2.1. Q.E.D.

Theorem 2.3  Suppose that the topological space Y is a field. And
let F be the collection of all bounded functions f : X — Y such that
addition and multiplication in F are induced from those in Y in a nat-
ural way and F has the uniform norm ||f|| = sup,cx |f(2)]. IfY is a
Banach space and F has a continuous semi p-operator p, then F is a
Banach space.
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Proof: By Theorem 2.2, F thus defined here is the function space
F in Definition 2.1. Let {f,} be an arbitrary Cauchy sequence in F.
Namely for any given € > 0, there exists a positive integer ng such that
[ fm — fall < € for all m,n > ng. Since |f(z) — fu(2)| < [[fm — fall,
|fn(z) — fm(z)] < € for all m,n > ng, where ng depends only on e.
If YV is complete with respect to its norm | - |, any Cauchy sequence
{fm(z)} in Y has the limit f(z) in Y for any fixed z € X as m — oo.
Hence, f is a mapping from X into Y. Then, by putting m — oo in
|fn(x) = fn(x)] < €, we have |fn(x) — f(z)| < € for all n > ng, where
no depends only on €. Since | fo(z) — £(@)] < sup,cy |fa(®) — f(@)] =
lfn = fll <€ [Ifn — fIl = 0 as n — oo.

Now let k£ be a non-negative integer and p be a continuous semi p-
operator of . By Definition 2.2, if f, € F, then p* o f, € F. And
p* o f =limy, ¢ p* o f, since p* is a continuous operator. Therefore,
if Y is complete, then pF o f : X — Y exists. In addition, since p is a
continuous operator, an operation of p to the case where the operand
contains such limits can be defined by a usual limiting process of f,, — f
such that (i) and (ii) in Definition 2.2 are still valid. Hence, p*o f € F.
Therefore, any Cauchy sequence {f,} in F has the limit f in F and
Definition 2.2 still holds for this limit. Q.E.D.

Definition 2.10 Let p be a semi p-operator of F. p° o f 210 f=f
for any f € F, where 1 is the identity operator of F.

Remark 2.8 The identity operator 1 of F is different from the iden-
tity function 1: X — Y where the identity function maps all elements
in X to the multiplicative identity element 1y in Y. By Definitions 2.6
and 2.10, we have loL =L and Lol = L.

Lemma 2.2 Let p be a semi p-operator of F. Then, for any f € F
andn =20,1,2,..., we have p"o f € F.

Proof: By Definition 2.2, if f € F, then po f € F. Hence, f € F =
pPof épO(pOf) € F. Likewise, we can obtain f € F = p"o f € F

forn =0,1,2,..., where p" o f = (po(po(---(pof )--+) . Q.E.D.
N—— SN—~—
n times n times

Theorem 2.4 Let p be a semi p-operator of F. If f is such that f € F
and f exists in F, then A, which satisfies p" o f = A\, f exists in F for
n=0,1,2,....
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Proof: Note that both f € F and p"o f € F exist by the assumption

and Lemma 2.2. Then, by (ii) in Definition 2.1, A, 2 fp"of € F exists
in Fforn=0,1,2,.... Q.E.D.

Lemma 2.3 Let p be a semi p-operator of F and let f be such that
f € F and f exists in F. And let Ay be such that po f =M\ f. Ifce F
is a non-zero constant function, then f € F and cf € F have the same
AL

Proof: By (i) and (ii) in Definition 2.2,

pol(cf)=cpof=cAif=Alcf)
Hence, f € F and cf € F have the same \;. Q.E.D.

Definition 2.11 Let p be a p-operator of F. And let S, be S, = {g9:
g=pof,f € F}. Then, Definition 2.2 states that for any g € S, there
exists a unique f € F. For such an f, we write f = p~Log. We call
p~! “the inverse operator of p.” Note that p° is itself its inverse.

Theorem 2.5 Let p be a p-operator of F and p~' be the inverse
operator of p. Then, p*op =1 forall f € F and pop~ ' =1 for
all g € Sp(C F). If p is linear, then p is an isomorphism between F
and S, under addition +.

Proof: For any f € F, there exists a g € S, such that f =p~log
and po f = g. Then, we have f =p~'og=p~o(pof)=(p~'op)of
for any f € F. Hence, p top=1forall f € F.

Next, for any g € S,, there exists a unique f € F such that po f =g
and f = p~! o g. Therefore, g =pof=po(ptog)=(popt)oyg
for any g € S,. Hence, pop™t =1 for all ¢ € S,. In addition to
p~top=pop !t =1, pis a homomorphism under addition + if p is
linear. Therefore, p is an isomorphism between F and S, under addition
+. Q.E.D.

Remark 2.9 If pis a linear semi p-operator, then for any po f,pog €
Sp and any scalars «,f8, we have apo f + fpog=po (af + Bg). And
we have af + g € F since f,g € F. So that po (af + Bg) € S,. Hence
Sp is a linear subspace of F.

Remark 2.10 Let & be such that & € F and h exists in F and let p
be a p-operator of F. Then, it is easy to verify that p~'h is the inverse
operator of hp.
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Corollary 2.1 Let p be a linear p-operator of F and let f and g be
such that f,g € F. If either g(po f) or f(po g) belongs to S,, then

fo=pto{glpe )} +p ' o{f(pog)} (2.6)

Proof: Since S, is a linear subspace of F, po(fg),g(pof), f(pog) € Sp
when either g(p o f) or f(po g) belongs to S,. Then (2.6) is obvious
from (ii) in Definition 2.2, Theorem 2.5, and the fact that p~! is a linear
operator to functions in S, if p is a linear p-operator to functions in F.

Q.E.D.
Corollary 2.2 )Xo = fplof=1if f € F and f exists in F.

Proof: It is obvious from Definition 2.10 and (viii) in Definition 2.1.
Q.E.D.

Theorem 2.6 If f € F and f exists in F, then A, is unique to f.

Proof: Let us first set p” o f = \,f and p" o f = A, f where p is a
semi p-operator of 7. Then, we have

(A=A f =0. (2.7)
By applying f to both sides of (2.7), we have

A — ) =0.
Hence, A, is unique to f. Q.E.D.

Definition 2.12 When f,g € F are such that f and § exist in F, we
define (Af)n and (Afg)n forn=0,1,2,... by

p"of=Ap)nf

and
p" o (fg) = (Asg)nfy,

respectively, where p is a semi p-operator of F.

Theorem 2.7 Let f,g € F be such that f and § exist in F. Then,
(Arg)r = (Ap)1 + (Ag)a-
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Proof: Let p be a semi p-operator of F. By (ii) in Definition 2.2, we
have

po(fg) = (oflg+flpog)
Ap)ifg+ f(Ahyg
{1+ g1} fg.

Therefore, by Definition 2.12 and fggf = 1, we have (As,)1 = (As)1 +
(Ag)1- Q.E.D.

Remark 2.11 Let f and g be such that f,g € F. If f and § exist
for f and g, respectively, then po f = 0 < (Ay); = 0 and po (fg) =
(poflg+ f(pog) e (Arg)1 = (Af)1 + (Ag)1. By the former, we can say
that if f is a non-zero constant function, then (Ay); = 0. This statement
corresponds to (i) in Definition 2.2. By the latter, (Arg)1 = (Af)14+(Ag)1
corresponds to (ii) in Definition 2.2.

Theorem 2.8 (Leibniz’s Theorem) For f,g € F such that fand g
ezist in F and for a linear semi p-operator p of F,

po ) = {3 (1) A Oa-ebs (2.8)
k=0
wheren = 0,1,2,..., <Z) i
<Z):n(n—1)~]'c!(n—k+1) (2.9)

fork=1,2,....n, and

<g) -1 (2.10)

Proof: First, it is clear that (2.8) is valid for n = 0,1 by Definition
2.10, Corollary 2.2, and Theorem 2.7. Assume that (2.8) holds for n = k.
Then, since p is linear, we have

k
polpho (o) = po H > () <Af>j<Ag>k_j} fg]

J
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(f)p O FHO 9]

Sy

- 1

<J) Ji—jg-po{(Ar);f}

<.
Il
<

+Z< ) Ap)if po{(\g)k—jg}
b1
B Z:: <J - 1) (kt1)—39 - (A)i f
+j§) (I;) Ar)if - A k+1)-59

= (Ap)oAgr+1fg+ Ag)oAp)r+1fyg
k
+Z { <§) + <j f 1) } (/\f)j()‘g)(k-i-l)—jfg
k+1
= S ("TYontem e @

By mathematical induction, we proved that (2.8) holds forn = 0,1,2,.. ..
Q.E.D.

Remark 2.12 (2.8) in Theorem 2.8 means

)‘fg - (Ag)n—k
2.12
I'(n+1) ];)F Fn—k+1) (2.12)

which can also be written as

()‘f )n _ (/\f)n % (/\ )n
Tt D) - TmtD Tt (2.13)

where * denotes the discrete convolution and I'(+) is the Gamma func-
tion.

Remark 2.13 [22] Since






